
123

Chapter 6
Data Detective Methods for Revealing 
Questionable Research Practices

Gregory Francis and Evelina Thunell

Abstract  There are many types of Questionable Research Practices (QRPs) that all 
tend to generate statistical information that misrepresents reality. This chapter dis-
cusses some methods for detecting the presence of QRPs, mostly by looking for 
conflicts in different sources of information. These methods typically cannot iden-
tify precisely which QRPs were used, and sometimes the conflicts are due to typos 
or simple mistakes, but either way readers should be skeptical about the validity of 
studies with inconsistent statistical information. An appropriate mindset for identi-
fying inconsistencies is that of a “data detective” who looks for patterns that do not 
make sense. We start by describing mathematical inconsistencies between sample 
sizes and the degrees of freedom in hypothesis tests, which are easy to detect and 
indicate either a QRP, unreported outlier removal, or sloppiness in reporting. A sim-
ilarly easy check is the use of the STATCHECK program to identify inconsistencies 
between reported test statistics and p-values, which may indicate sloppiness in 
reporting or improper rounding to conclude statistical significance. Similar prob-
lems can also be discovered with the GRIM test, which identifies situations where 
reported means or proportions are impossible for the given measurement and sam-
ple size(s). Two additional tests explore inconsistencies across experiments. First, 
the Test for Excess Success compares the frequency of reported successful out-
comes to the expected frequency if the tests were run properly, fully reported, and 
analyzed without QRPs. Too much success indicates a problem with the reported 
results (possibly because of QRPs). Second, the p-curve analysis examines the dis-
tribution of reported p-values for properties that indicate invalid data sets (that are 
perhaps the result of QRPs).
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�Introduction

As discussed in other chapters, questionable research practices (QRPs) and p-
hacking can turn non-conclusive data sets into seemingly interesting findings. While 
such practices might be tempting for a researcher who is desperate to publish their 
work in fancy journals, they come at the expense of the credibility and reproduc-
ibility of the findings. Examples of QRPs are publication bias (reporting significant 
findings but not reporting relevant non-significant findings), inappropriate sampling 
(e.g., adding data points until achieving statistical significance), inappropriate anal-
yses (e.g., trying various analyses and reporting only the ones that give the wanted 
result), and hypothesizing after the results are known (HARKing; inventing a new 
theory and hypothesis that matches your results). Hypothesis testing is the dominant 
statistical analysis method in clinical psychology, and it comes with strict require-
ments and rules that are violated in different ways by QRPs. The impact of using 
QRPs is a kind of bias that misrepresents reality.

QRPs can make studies appear to provide strong support for effects that do not 
exist in reality. That is, the results seem to support the alternative hypothesis, but the 
null hypothesis is actually true. How then can we distinguish scientific results that 
are valid from results that are based on QRPs? Luckily, QRPs tend to leave a pattern 
of statistical evidence that can be used to identify their presence. In this chapter, we 
show how to detect and interpret such patterns.

In many respects, revealing the patterns generated by QRPs is similar to a detec-
tive trying to crack a case. The information may not be right in front of you, but 
different clues can be combined to demonstrate problems with experimental results 
and conclusions that are based on QRPs. In this chapter, we describe a number of 
methods that help you act like a data detective and identify problems in reported 
statistics.

�Mathematical Inconsistencies and Data Gleaning

A valuable skill for a data detective is recognizing how to extract relevant informa-
tion from what the authors themselves report. Here, we review some approaches 
that have proven useful for identifying problems with reported results.

A simple approach for detecting errors in reported results is to look for numerical 
inconsistencies. For example, many statistical tests (e.g., t and F tests) are based on 
distributions with a “degrees of freedom” (df) value. For example, a one-sample 
t-test has df  = n −  1, where n is the sample size, while a two-sample t-test has 
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df = n1 + n2 − 2, where n1 and n2 are the sizes of the two samples. Likewise, an 
independent one-way ANOVA F-test has two degrees of freedom terms called dfnu-

merator = K − 1 and dfdenominator = N − K. Here, K is the number of conditions and N is 
the sum of sample sizes across all conditions. Scientific papers usually report the 
sample sizes and the number of conditions, so it is relatively easy to calculate the 
degrees of freedom. Thus, you can easily check the following text: “As predicted, 
with n1 = 35 and n2 = 27, we found a significant difference between the control and 
experimental means t(58) = 2.1, p = 0.04.” The authors report 58 degrees of free-
dom, but using the formula above for the two-sample t-test you know that the 
degrees of freedom should actually be n1 + n2 − 2 = 60. An inconsistency of this 
type might indicate that the authors removed some participants from their data set 
without reporting this, but still properly reported the degrees of freedom for the 
remaining data. Outlier removal is not necessarily a QRP, but sometimes partici-
pants are removed because their absence allows the remaining data to show a sig-
nificant (p < 0.05) result. At any rate, data removal should be fully reported and 
justified. Errors of this type are rather common. At best they indicate sloppiness, 
and regardless of their source should prompt you to feel less confident in the reported 
results and their associated conclusions. The next section describes a conceptually 
similar check for inconsistencies that often have more severe consequences.

�STATCHECK

Most statistical analyses in psychology use hypothesis testing to determine whether 
there is an “effect.” Typically, this is done by defining an “alternative hypothesis” 
that there is a true effect and a null hypothesis that indicates “no effect.” For exam-
ple, when testing whether a drug is effective at reducing the duration of a cold, the 
null hypothesis H0 might look like:

	 H0 1 2: � �� 	

where μ1 and μ2 denote the duration of the cold with and without the drug, respec-
tively. Thus, the null hypothesis states that there is no difference in the population 
mean durations with or without the drug whereas the alternative hypothesis states 
that the drug does change the duration. The goal of the hypothesis test is to decide 
whether to reject the null hypothesis. This decision is based on “statistical signifi-
cance,” which is determined by a test statistic that is derived from the experimental 
data. A two-sample t test for independent equal means has a test statistic of:
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where X1
 and X2

 are the sample means and sX X1 2−  is the standard deviation of the 

sampling distribution of the difference of means, which is a function of the standard 
deviation of each sample, s, and the sample sizes n1 and n2. If the null hypothesis is 
true, the t-value is usually close to 0. The hypothesis test will then not reject the null 
hypothesis. If the alternative hypothesis is true and the sample sizes are large 
enough, the t-value will typically deviate substantially from 0. In this case, the 
researcher rejects the null hypothesis and can argue for their alternative hypothesis. 
However, just due to random sampling, the t-value will sometimes deviate from 0 
even if the null hypothesis is true, and the researcher will then erroneously reject the 
null hypothesis. How often this so-called Type I error happens is controlled by the 
researcher through a significance criterion, α.

Oftentimes, the criterion is set to α = 0.05, meaning that the probability of con-
cluding that an effect exists when it truly does not is 5%. The decision about whether 
to reject the null hypothesis and thus conclude that an effect exists (concluding 
statistical significance) is based on the p-value (the area under the tail, beyond the 
observed t-value, of the t sampling distribution if the null hypothesis is true). If 
p < α, then the observed t-value deviates more from 0 than what should be common 
if the null hypothesis is true. Therefore, the researchers conclude that there seems to 
be an effect: they reject the null hypothesis and claim that the observed difference 
of means is “statistically significant.”

When reporting the results of a hypothesis test it is common to report the com-
puted t-value, the corresponding degrees of freedom (which depends on the sample 
size(s)), and the p-value. It often looks like: t(48) = 2.55, p = 0.014. It is actually 
redundant to report both the t- and p-values, as there is a one-to-one relationship 
between them for a given degrees of freedom. This redundancy can be used to check 
the reported statistics.

For example, suppose you read an article that reports: “As predicted we found a 
significant difference between the control and experimental conditions, t(22) = 2.00, 
p < 0.05.” For the given degrees of freedom (df = 22) and t-value, one can recom-
pute the corresponding p-value1 to discover that p = 0.058. Thus, the reported t-value 
is incompatible with the statement p < 0.05. Instead, the result is actually not statis-
tically significant (because p  > α  =  0.05). The mathematics in the original text, 
therefore, indicates that something is wrong with the numbers. p-value inconsisten-
cies can come about from simple typos (e.g., typing 0.014 instead of 0.14), or hon-
est mistakes (e.g., copying the wrong line from the output of statistical software). In 
some cases (as in the above example), p-value inconsistencies might be because 
authors “round down” a reported p-value in order to make readers believe an experi-
ment produced statistical significance. This kind of inappropriate rounding is a 
QRP. Regardless of how they appear, p-value inconsistencies should raise concerns 
about the reported results and their associated conclusions.

1 For example, with the online calculator at https://introstatsonline.com/chapters/calculators/t_
dist.shtml
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STATCHECK is an online program (http://statcheck.io) that automates this kind 
of consistency check. To use it, simply upload a copy of an article and let 
STATCHECK scan it for statistical information. Just as we did above, STATCHECK 
identifies test statistics and their accompanying degrees of freedom, recomputes the 
p-value based on these numbers, and then compares it to the reported p-values. 
STATCHECK includes some additional computations (such as checking on whether 
the recomputed p-value is close enough to the reported p-value for appropriate 
rounding to be an explanation, and identifying whether an inconsistency in p-values 
changes the decision on statistical significance). STATCHECK works for a variety 
of statistical tests.

Some limitations of STATCHECK include that it cannot process certain file for-
mats, it typically does not distinguish between one- and two-sided tests, and it can-
not parse non-standard formats for reporting statistical outcomes. These limitations 
cause STATCHECK to sometimes omit or misinterpret statistical test results, and it 
is therefore always advisable to manually check the statistics flagged by 
STATCHECK.

Errors of this type are shockingly common. Systematic investigations of scien-
tific articles have found that around half of them have at least one inconsistent 
p-value and that around 12–14% of the articles contain an inconsistency that alters 
the interpretation of statistical significance.

�GRIM Tests

Another way of identifying inconsistencies in statistical reporting is to notice a rela-
tionship between sample sizes and measured values. Let’s consider a simple case. 
Suppose you receive a marketing report for a survey to evaluate how many people 
might be interested in a new product (a macaroni-and-cheese pizza) at your restau-
rant. One of your employees runs a survey on n = 37 people and reports that 56% of 
the people expressed interest in the new product. Your first reaction might be that the 
survey seems pretty promising for your new product. A bit of data detective work, 
however, suggests that you should assign the survey task to a different employee. 
The percentage calculation is computed from the following formula

	
%Interest � �

f

n
100

	

where f is the number of survey respondents who are interested in your product and 
n = 37 is the number of people who participated in the survey. Let’s deduce the 
value for f by plugging in the values reported by your employee

	
56

37
100� �

f
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With a bit of algebra, we find that f = 20.72. We know this value for f cannot be quite 
right because there cannot be fractions of respondents. Could the reported percent-
age have been rounded from the true value? We can check by looking at nearby 
values of f. For example, if f = 21 then we would get

	
% .Interest � � �

21

37
100 56 76

	

Unfortunately, this value does not explain why your employee reported 56% because 
rounding of 56.76% would produce 57%. What if f = 20? Then we get

			 
% .Interest ,� � �

20

37
100 54 05

	
which is too small to be rounded up to 56%. In fact, with n = 37 people in the 

survey it is impossible for the percentage to equal 56%, even after rounding. So, 
either your employee misreported the number of people in the survey or simply 
made up the numbers. At any rate, you should hold off on making changes to your 
menu until you resolve the inconsistency.

Similar logic applies to reported values of means. For example, suppose a survey 
asks people to rate, on an integer scale from 1 to 7, how much interest they have in 
a macaroni-and-cheese pizza. A rating of 1 indicates no interest at all and a rating of 
7 indicates that they want it now! The employee responsible for the survey reports 
that 55 responders gave a mean value of 4.74, which indicates interest above the 
middle point of the scale. The computation of the mean, X , is based on the follow-
ing formula:

	
X

X

n
i�

�
,
	

where Xi refers to the score for responder number i, and the capital sigma indicates 
to sum the scores of all the responders. Thus, with the reported mean and sample 
size, we can solve for the sum of scores:

	
� � � � � � � �X n Xi 55 4 74 260 7. .

	

Importantly, the scores can only take integer values (1, 2, 3, 4, 5, 6, or 7) because 
that is the nature of the rating scale. This means that the sum of scores must also be 
an integer value, which it is not in the above calculation. Did we get a decimal value 
for the sum because the reported mean was rounded from its true value? We can 
check this possibility by considering nearby values for the sum of scores and seeing 
if the corresponding mean value matches what was reported. For example, using 
∑Xi = 261 (e.g., rounding up to the nearest integer) gives
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X

X

n
i�

�
� �
261

55
4 7455.

	

which would round up to 4.75 and so cannot correspond to the reported mean of 
4.74. Likewise, using a smaller value for the sum of scores such as 260 would give

	
X

X

n
i�

�
� �
260

55
4 727.

	

which would round up to 4.73, and thus is too small to match the reported mean of 
4.74. Once again, a mean value of 4.74 is mathematically impossible for a sample 
of size n = 55 when measuring ratings with this kind of 1–7 scale.

Note that this kind of inconsistency is sometimes explained by rounding of 
reported statistics. If the sample size was n  =  46, a mean of X =4.74 would be 
fine because

	
� � � � � � � �X n Xi 46 4 74 218 04. .

	

which rounds down to 218. A re-computation of the sample mean gives:

	
X

X

n
i�

�
� �
218

46
4 739.

	

which rounds up to match the reported value of 4.74. Thus, here the reported mean 
is consistent with the sample size, the nature of the scale, and a bit of rounding for 
reported values.

These types of calculations are referred to as exploring the Granularity-Related 
Inconsistency of Means (GRIM). Many of the calculations described above can be 
automated in a spreadsheet. We have provided such a spreadsheet, GrimTest.xls, at 
the Open Science Framework (https://osf.io/k8yjc/). Enter a reported mean (or pro-
portion) and a sample size, and the spreadsheet indicates whether the numbers 
make sense.

With a bit of ingenuity and algebra, one can apply the GRIM analysis also to 
other situations. For example, sometimes an article reports the combined sample 
size across two samples and proportions or means for each sample but not the spe-
cific size of each sample. A variation of the GRIM test might consider all possible 
sample size combinations that add up to the reported combined sample size and see 
if any combination is consistent with the reported means or proportions. In some 
cases, it is possible to use both means and standard deviations to identify 
inconsistencies.

GRIM inconsistencies can occur because of typos or other forms of sloppiness. 
They can also happen through QRPs such as removing data from the sum of scores 
but not taking their removal into account when reporting the sample size. In some 
cases, a GRIM inconsistency may indicate that the reported data is simply “made 
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up.” Whether based on fraud, tinkering, or a typo, readers of data with a GRIM 
inconsistency should be skeptical about the reported results and their implications.

�Data Extraction Techniques

Many GRIM inconsistencies could be easily resolved if scientists shared their data 
and analysis code. Regrettably, this is not the norm. Even though many journals 
formally require authors to share their data, it is uncommon for authors to do so, and 
the journals often do not ensure that authors follow the rules.

Data sharing also has other advantages, such as allowing a scientific field to take 
full advantage of a scientist’s empirical work by allowing other researchers to 
explore additional aspects of the data or use it to guide new experiments. Until data 
sharing becomes common, data detectives can use a variety of techniques to glean 
some statistical information from reported statistics. Here, we show how some of 
these techniques can be combined.

Figure 6.1a schematizes the stimuli in a spatial cuing experiment. On each trial, 
a participant looks at a computer screen that briefly flashes a central arrow pointing 
to the left or to the right and then shows a target letter either to the left or to the right. 
The observer’s task is to identify the target letter as quickly as possible by making a 
button-press, and the computer measures their response time. On 80% of the trials, 
the arrow points to where the target letter is about to appear, so observers learn to 
attend to the indicated location. The experiment investigates how much such 
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Fig. 6.1  Stimuli and results for a spatial cueing experiment. (a) shows stimuli for congruent and 
incongruent trials. In congruent trials the arrow points to the location of a subsequent target letter. 
In incongruent trials the arrow points to the opposite location of the target letter. (b) shows the 
results. Mean response time is shorter for congruent trials than for incongruent trials. The error 
bars indicate one standard error of the mean
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attention affects the speed of letter identification. Each observer produces a mean 
response time for congruent trials (when the arrow points to the location of the tar-
get letter) and for incongruent trials (when the arrow points to the opposite side of 
the location of the target letter). Figure 6.1b shows typical data from n = 31 observ-
ers (the data are available in a spreadsheet, SpatialCueingData.xlsx, at the Open 
Science Framework). It indicates that the mean response time is shorter for the 
congruent than for the incongruent trials. The error bars indicate the standard error 
across observers for each condition.2

It is common to present findings with a data plot (like Fig. 6.1b) along with a 
summary of a statistical test. Here, the test is a dependent t test that compares mean 
response times for congruent and incongruent conditions: t(30) = 2.13, p = 0.04. For 
a data detective, there is more quantitative information than what is directly reported. 
For example, you might want to know the standard deviations for the conditions and 
the correlation across observers. The standard error for a condition, SX ,  is related 
to the standard deviation of the data, S, by the formula:

	
S

S

n
X =

	

So if we know the standard error, we can easily solve for the standard deviation. The 
error bars in Fig. 6.1b indicate the standard error, so we just need to extract the 
information from the plot. We do this using a program called Plot Digitizer, which 
prompts the user to identify the ends of each axis and then click on points of interest 
in the plot. The program computes the position of each marked point in the plot. 
Figure 6.2 shows the two windows from Plot Digitizer that report the height of each 
bar and its associated error bar.

The values under the “Condition” column in the small window to the left indicate 
the x-value of each point, in the order they were clicked. In this bar plot, the x-values 
simply indicate the two conditions. We are more interested in the values in the 
“Response Time” column. The first two values refer to the mean and top of the error 
bar for the congruent condition, and the last two values refer to the mean and top of 
the error bar for the incongruent condition. The height of the error bar above the 
mean is the standard error, and so we can compute the standard error SX

 with the 
following formula:

	
SX � �Error bar height Mean

	

We can then easily compute the standard deviation S for each condition as:

	
S S nX=

	

2 Sometimes authors compute an error bar using the standard deviation across observers or the 
range of a 95% confidence interval; it is typical for the figure caption to indicate the basis of each 
error bar.
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Fig. 6.2  Data gleaning of spatial cueing data using the Plot Digitizer program. The yellow lines 
on the plot connect selected points

Finally, we can compute the correlation between the congruent and incongruent 
conditions by using the variance sum law, which describes how the variance of dif-
ference scores Sx y−

2  is related to the variance of each score and their correlation r:

	
S S S rS Sx y x y x y� � � �2 2 2 2

	

Here, we use variables x and y to refer to the two correlated measures (e.g., congru-
ent and incongruent response times). Some algebra shows that the correlation 
must be:

	

r
S S S

S S
x y x y

x y

�
� �

�
�
2 2 2

2
	

We can compute the variance of difference scores from the means and t-value 
because the t-value is given by:

	

t
X Y

S

X Y

S nX Y x y

�
�

�
�

� � /
	

A bit of algebra results in a formula for the standard deviation of the difference 
scores Sx − y:
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S

X Y

t
nx y� �

�

	

Table 6.1 compares the values gleaned from Fig. 6.1b and the above computations 
against the values computed directly from the raw data. One can see that the gleaned 
values are quite close to the actual values. Small discrepancies exist because it is 
difficult to place the clicks directly on the top of the bars in the plot and because the 
reported t-value is rounded to two decimal places. Using the gleaned values to esti-
mate the correlation between congruent and incongruent response times gives 
r = 0.385. The true correlation (computed from the raw data) is r = 0.391.

These extraction techniques can also be used to identify non-obvious inconsis-
tencies in a data set. For example, suppose the text describing a dependent samples 
t-test reported the following, “As predicted, there was a significant difference, 
t(30)  =  2.8, p  =  0.009, between the control ( X = 45 , s  =  7.3) and experimental 
( X = 55 , s = 7.6) conditions.” While this result might seem like convincing support 
for there being a difference in means, it actually makes no sense at all. The reported 
degrees of freedom for the dependent t-test indicates that n = 31. Combining this 
sample size with the reported mean and t-values, the standard deviation of the dif-
ference scores can be computed using the formula above, Sx − y = 19.88. Now, we can 
check whether this value is possible with the standard deviations given for each 
condition. Solving for the correlation between scores in the control and experimen-
tal conditions using the formula above gives r = −2.56, which violates the constraint 
that correlations must always be between plus and minus one. Thus, we can con-
clude that the reported numbers cannot be correct.

This section has mostly dealt with mathematical inconsistencies in statistical 
reports. Standard reporting formats include redundant information that sometimes 
allow data detectives to identify inconsistencies. With these methods, the data detec-
tive checks for inconsistencies in the reported results of a single experiment. In the 
next section we identify two methods for characterizing inconsistencies across 
experiments.

Table 6.1  True and gleaned values for the means, standard errors, and standard deviations of the 
spatial cueing data

Statistic Congruent Incongruent
True Gleaned True Gleaned

Mean 353.64 353.05 387.85 387.25
SE 12.45 12.94 16.10 15.71
SD 69.30 72.04 89.63 87.48
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�Experimental Inconsistencies

Hypothesis testing is often presented as a way of drawing conclusions within a 
single experiment. However, sometimes conclusions are based on statistical out-
comes across experiments, and the properties of hypothesis testing impose impor-
tant constraints in such situations. We will describe two analysis methods that look 
for violations of these constraints. Conceptually, identifying inconsistencies across 
experiments is similar to identifying mathematical inconsistencies within an experi-
ment. However, there are two important differences. First, mathematical inconsis-
tencies could potentially be due to typos or calculation errors rather than QRPs. The 
same interpretation is usually not plausible for inconsistencies across experiments. 
Second, mathematical inconsistencies are definitive in the sense that there is no way 
for the numbers to make logical sense. Inconsistencies across experiments, on the 
other hand, are defined as improbable (rather than impossible) inferential outcomes. 
These inconsistencies suggest the involvement of QRPs because observed outcomes 
would be very rare if QRPs were not involved.

�Test for Excess Success

In most experiments in clinical psychology, conclusions are based on hypothesis 
testing. Due to how samples are randomly selected for such tests, it sometimes hap-
pens that a test draws the wrong conclusion. For example, it is possible that a popu-
lation with a true null hypothesis produces a significant outcome simply due to the 
scientist happening to get an unusual sample of data. The hypothesis testing proce-
dure for drawing a conclusion controls the rate of making such a Type I error; and 
scientists typically set that rate to be 5%. Likewise, it is possible that a population 
with a true effect produces a non-significant outcome due to the scientist happening 
to get an unusual data sample. The probability of making such a Type II error is not 
directly controlled in hypothesis testing, unless the scientist has a good idea of the 
size of the true effect and gathers a large enough sample of data.

An important implication of drawing conclusions based on hypothesis tests is 
that mistaken conclusions are inevitable. Even when doing everything correctly (in 
terms of random sampling, analyzing the data, and reporting the results), scientists 
must sometimes make the wrong decision. Consider the power of an experiment. 
Power is the complement of Type II error, meaning that it refers to the probability 
that a hypothesis test based on a random sample of data will reject the null hypoth-
esis when this is the correct conclusion (there really is an effect). Power depends on 
the size of the effect and on the size of the sample, in that larger effects and larger 
samples give higher power. Oftentimes, scientists do not try to control power, 
because the effect size is unknown. When power is considered, scientists often aim 
for sample sizes that give at least 80% power. However, this is an arbitrary target, 
and it is sometimes inappropriate. Consider a scientist who plans two independent 
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experiments, and will draw a conclusion in favor of some theoretical conclusion 
only if both experiments show significant effects. If each experiment has 80% 
power, then the probability of both experiments producing significant results is 
0.82 = 0.64. Thus, even though the power of each experiment is acceptable when 
considered alone, the odds of the scientist finding support for their theoretical con-
clusion are only slightly better than a coin flip.

As additional successful experiments are added to the list of requirements for 
drawing a theoretical conclusion, the probability of consistent success decreases. 
Out of 20 experiments, one should expect on average 0.8 × 20 = 16 significant out-
comes. The probability of all 20 experiments producing significant outcomes is only 
0.820 ≈ 0.01. Thus, if a scientist reports that 20 out of 20 experiments each with a 
power of 0.8 produced significant outcomes, this should not be interpreted as strong 
evidence for the theoretical conclusions but instead as an indication that something 
has gone wrong; in particular it suggests that the scientist engaged in some types of 
QRPs. The absence of non-significant findings in experiments with limited power is 
a marker for flaws in the scientific process because the reported findings seem “too 
good to be true.”

These observations can be quantitatively formalized with the Test for Excess 
Success (TES). By estimating effect magnitudes from the reported experiments, this 
method estimates the success rate of future experiments that use the same sample 
sizes. The success rate is an estimate of the probability of future replication experi-
ments to produce the same degree of success as the original experiments. If this rate 
is low (0.1 is a common, if arbitrary, threshold), then the reported results of the 
original studies are deemed problematic (too good to be true).

To demonstrate how to perform a TES analysis, consider a prominent paper that 
reported six experiments investigating the impact of poverty on cognitive perfor-
mance. The main claim was that poverty-related concerns use mental resources that 
would otherwise be available for other tasks. This claim implies that poor people 
make bad choices partly because they are poor, rather than being poor because they 
make bad decisions. If true, this finding has many important policy implications. 
When deciding on how to best help poor people, one needs to consider their lower 
cognitive capabilities, which may vary with their financial situation. The paper 
describing these six experiments was published in the journal Science, which is 
widely regarded as the most prestigious scientific academic journal, and the findings 
were considered important enough to merit mention in the New York Times and 
numerous other media outlets. Below, we use a TES analysis to show that these 
results actually do not adequately support the theoretical claims. Arguably, some of 
the findings were produced with QRPs.

For each of the six studies, we can extract the statistics for the relevant hypoth-
esis tests. For most of the studies, multiple hypothesis tests were performed. 
However, to keep the current analysis simple, we estimate an upper limit of the suc-
cess rate for each experiment by considering only the statistically weakest relevant 
test. This approach is conservative, since an experiment is always less likely to 
produce multiple specific outcomes than only one of the outcomes.
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A key result from Experiment 1 was an interaction between income (rich or poor, 
defined by a median split) and condition (scenarios describing hard or easy to man-
age financial difficulties). The measurements included performance on a Raven’s 
matrices task (a measure of fluid intelligence) and a cognitive control task. To esti-
mate an upper limit of the power of Experiment 1, we used the weaker of the results 
from these two measures. The calculation of power is done in an R program 
(TESAnalysis.R) that is available for download at the Open Science Framework. 
Without going into the specific formulas, the program converts the sample sizes and 
test statistics (F- or t-value) into a standardized effect size (Hedges’ g). This stan-
dardized effect size is then used to estimate the probability that a new experiment 
with the same sample size as the original experiment would produce a significant 
outcome. As the first row of Table 6.2 indicates, the power is around 0.6. So, if the 
effect is real and similar to what was originally reported, future replication studies 
with the same sample size have around a 60% chance of producing a significant 
outcome.

Experiment 2 was similar to Experiment 1, but with nonfinancial scenarios. The 
prediction of the authors was that this design would not produce a significant differ-
ence between rich and poor participants; and that was precisely what they reported. 
The success probability for this experiment is computed as one minus power, which 
gives the probability of a random sample not producing statistical significance. As 
shown in Table 6.2, the success probability is rather high because it is easy to not 
produce a significant outcome with a small sample.

Experiment 3 added monetary incentives for correct responses and found similar 
effects as for Experiment 1. Namely, there was a significant interaction between 
income and scenario for measures of cognitive control. If the effect is similar to 
what is reported in Experiment 3, then the power of a replication experiment with 
the same sample sizes is just above 0.5.

Table 6.2  Estimated success probabilities for six experiments investigating poverty and cognition. 
The probability of all six experiments producing successful outcomes is so low (0.065) that the 
results seem too good to be true

Experiment Test Reported statistics
Success 
probability

1 Interaction for Raven’s matrices F(1,97) = 5.12, 
p = 0.03

0.602

2 Non-significant difference for rich and 
poor on cognitive control

F(1,35) = 1.69, 
p = 0.20

0.764

3 Interaction for cognitive control F(1,98) = 4.31, 
p = 0.04

0.532

4 Interaction for Raven’s matrices F(1,92) = 4.04, 
p = 0.04

0.505

Field 1 Pre- and post-harvest differences p < 0.001 ~1
Field 2 Pre- and post-harvest heart rate (stress) t(187) = 1.715, 

p = 0.088
0.523

PTES 0.065
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Experiment 4 was very similar to Experiment 1, but with a different order of 
some tasks. A key result is an interaction between income and condition for the 
Raven’s matrices task. Power for a replication experiment is barely above 0.5. We 
should note that the reported statistics for Experiment 4 show a p-value inconsis-
tency. A recalculation shows that F(1,92) = 4.04 corresponds to p = 0.047 rather 
than the reported p = 0.04. For the TES analysis, we assume that the reported F-
value is correct.

To explore the generality of the findings beyond the controlled settings of 
Experiments 1–4, two field studies were run to investigate cognitive performance 
for farmers in India. The first field study found strong differences in cognitive per-
formance for farmers pre-harvest (when they are relatively poor) compared to post-
harvest (when they are relatively wealthy). The original text does not report sufficient 
statistical information to compute power of a replication study, but the reported 
p-values are small, so the estimated power will be close to 1.

The second field study also found cognitive effects pre- and post-harvest, and 
this study concluded that the effect is not because of nutritional differences (food 
consumption was similar pre- and post-harvest) but seemed to be due to stress 
(farmers had a higher heart rate pre- compared to post-harvest). The authors of the 
study used a non-typical significance criterion of 0.1 rather than the usual 0.05. In 
our analysis, we suppose that a deviation from the norms of hypothesis testing was 
appropriate, and we calculated power with this atypical significance criterion. 
Regardless of these details, the probability of a replication study showing a signifi-
cant result is only a bit above 0.5.

The probability that six independent experiments like these should all be suc-
cessful (a non-significant test outcome for Experiment 2 and significant test out-
comes for the other studies) is the product of the probabilities in Table 6.2, which is 
0.065. Thus, if the effects are real and similar to what is reported, studies like these 
are unlikely to produce six successful outcomes. Given the rarity of the observed 
results, scientists should be skeptical that the reported experiments are representa-
tive of reality. The studies described in the original paper do not make a strong argu-
ment for poverty having the hypothesized impact on cognition, and it remains an 
open question whether this effect actually exists.

A reasonable interpretation of our TES analysis result is that the authors of the 
original study engaged in some kind of QRPs in order to produce their reported 
results. The TES analysis cannot differentiate between different types of QRPs, and 
it is possible that the authors themselves do not know what kinds of choices they 
made to produce success across their experiments. Regardless of the origins of the 
problems, the bottom line is that the reported results are unlikely to represent reality. 
We advise readers to ignore the reported findings and wait for (or plan) better 
experiments.
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�P-Curve Analysis

If the null hypothesis is true, then p-values across experiments are approximately 
uniformly distributed. That is, the p-value is equally likely to take any value between 
0 and 1. At first glance, this might seem like a very strange claim, but it is actually 
intuitive once you understand how p-values are related to Type I error control.

Remember that in hypothesis testing the scientist defines a significance criterion, 
α, to set the probability of picking a random sample that rejects a true null hypoth-
esis. The scientist then computes the p-value for their data and compares it to α. If 
p < α, then the null hypothesis is rejected. Importantly, this procedure works for any 
value of α. Thus, if α = 0.05 and the null hypothesis is true, there is a 0.05 probabil-
ity of picking a random data set that produces a p-value smaller than 0.05. If 
α = 0.10, then there is a 0.1 probability of picking a random data set that produces a 
p-value lower than 0.1. Just to continue the example, if α = 0.34294, then there is a 
probability of 0.34294 of picking a random data set that produces a p-value below 
0.34294. This property indicates that the probability of observing a p-value smaller 
than any value x is precisely x. This is the definition of a uniform probability 
distribution.3

Figure 6.3a shows the distribution of p-values for simulated one-sample t-tests 
when the null hypothesis is true (effect size equals zero). Here, simulated data were 
drawn from a standard normal distribution and then analyzed with a one-sample 
t-test for H0: μ = 0. This simulated experiment was repeated 10,000 times, and the 
histogram shows that the resulting p-values are approximately uniformly distributed 
across the interval 0 to 1. The gray vertical line indicates the 0.05 criterion for sta-
tistical significance. As intended for a true null hypothesis, about 5% of the p-values 
fall below this criterion. R code, pValues1.R, to reproduce the plots in Fig. 6.3a is 
available at the Open Science Framework.

The situation is quite different when the null hypothesis is false. When there 
really is an effect, the distribution of p-values is positively skewed, with more small 
p-values than large p-values. Figure 6.3b shows the distribution of p-values when 
the standardized effect size is 0.2 and the sample size is N = 50. The skew is intuitive 
if we consider the fact that increasing the effect size leads to increased power (the 
probability of picking a sample that rejects the null hypothesis). In this case, power 
is 0.284, and so 28.4% of the p-values must fall below the 0.05 criterion. As power 
increases, the distribution of p-values becomes more skewed with more very low 
p-values. Figures  6.3c and d show this property for larger effect sizes (and thus 
higher power). In fact, the shape of the p-value distribution for a given test is entirely 
determined by the power of the test. Figures 6.3e and f show p-value distributions 

3 There are some situations where p-values do not follow a uniform distribution even when the null 
hypothesis is true. For example, a test of proportions with a small sample size is constrained by 
combinatorics to produce some p-values and not others; therefore the p-values will not follow a 
uniform distribution. Likewise, a test of means may show a small preference for some p-values due 
to rounding characteristics of mean measurements. These issues aside, the distribution of p-values 
is close to uniform for many hypothesis tests when the null is true.
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Fig. 6.3  Histograms characterizing p-value distributions for tests with different power values. The 
vertical gray line indicates the significance criterion (0.05). The histogram interval width is 0.01
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for combinations of effect sizes and sample sizes that give the same power value as 
in Fig. 6.3c. The p-value distributions are essentially the same (small deviations are 
due to random sampling in the simulations).

Importantly, these properties hold even when considering only significant (e.g., 
p < 0.05) findings. Figure 6.4 plots p-value distributions for significant p-values 
(between 0 and 0.05). When the null hypothesis is true, the distribution is uniform 
(Fig. 6.4a). For non-zero (real) effects, the p-value distribution is skewed, with a 
preponderance of very small p-values (Fig. 6.4b–d). The code to reproduce these 
simulations, pValues2.R, is available at the Open Science Framework.

The p-values for each histogram in Figs. 6.3 and 6.4 were generated from experi-
ments that have the same effects and sample sizes (and thus the same power). Should 
experiments differ in sample sizes or effect sizes (and thus in power), the curves are 
different, but the general shape (e.g., positive skew) continues to hold. Thus, a set of 
experiments with some (different) real effects should produce a distribution of 

Fig. 6.4  Histograms characterizing p-value distributions between 0 and 0.05 for tests with differ-
ent power values. The properties are the same as for the histograms in Fig. 6.3. The vertical gray 
line indicates the significance criterion (0.05)
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p-values that has positive skew. Likewise, a set of experiments that entirely investi-
gates (maybe different) null effects should produce a distribution of p-values that is 
flat. A set of experiments that contains some true null effects and some real effects 
will produce a p-value distribution with positive skew.

As data detectives, we can make use of the p-value distribution. First, we note 
that its shape is essentially unaffected by publication bias (a bias to only report sig-
nificant outcomes): Even if only significant outcomes are published, the distribution 
of p-values below the significance criterion differs between null and real effects and 
true null effects will produce something close to a uniform distribution. Moreover, 
there are other problems that an analysis of the p-value distribution can efficiently 
identify. For example, left-skewed distributions are a sign of QRPs because such 
distribution shapes should be very unlikely if data collection and statistical analyses 
are done properly. The online app at http://p-curve.com automates analyses of the 
p-value distribution. Figure 6.5 plots the p-curve generated by a set of experiments 
that explored how the placement of calorie labels (before or after a menu item) 
influenced selection of foods with high calories. Across six studies (three in the 
main text and three in supplemental material), researchers consistently found sig-
nificant effects that indicated that placing the calorie labels before a menu item led 
people to order lower calorie foods. The test statistics for these studies are shown in 
the small window in Fig. 6.5 (note that the test statistic for one study was taken from 
a corrigendum provided by the authors to fix a small error in their data set). The 

Fig. 6.5  Results of the p-curve app for six studies investigating the impact of calorie information 
on menu choices. The solid blue curve reflects the frequency of reported p-values. It is left skewed, 
which is not how p-values should be distributed
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researchers argued that putting the calorie information in the leading position makes 
it more prominent in memory and therefore more influential than when it is placed 
after the menu item (importantly, placing the calorie information after the menu 
item is standard in the United States). However, the distribution of p-values for 
these six studies suggests that something is wrong with this set of results. The blue 
curve in Fig. 6.5 reflects the reported p-values, and there are none smaller than 0.04. 
Such a left-skewed distribution should be very unlikely if the studies are run cor-
rectly. The online app includes statistical tests for evaluating the distribution of 
p-values relative to a null (uniform) distribution and to what they refer to as an 
“inadequate” distribution (the p-value distribution for studies with power of 0.33), 
which is described by the green line in Fig.  6.5. The app also reports a test for 
whether the studies contributing to a p-value distribution contain “evidential value,” 
meaning that the distribution is right skewed. For these tests, the p-curve analysis 
indicates that the evidential value is inadequate (the empirical curve is flatter than a 
curve with power of 0.33) and it does not indicate evidential value (the empirical 
curve is not right skewed).

A reasonable interpretation of the p-value distribution in Fig. 6.5 is that some of 
the experimental results were generated with QRPs. It is not possible to identify 
precisely what QRPs were used, but we should not trust that the reported results or 
corresponding conclusions reflect reality. The conclusions may yet be correct, but 
the reported experiments do not provide appropriate support for those conclusions. 
Scientists who want to investigate this topic further need to start over with better 
experiments.

It is fairly easy to apply the p-curve analysis, but it is important to understand its 
requirements and interpretation. One requirement is that the p-values that contribute 
to the distribution must be independent. It is sometimes the case that a set of data is 
analyzed with multiple hypothesis tests (e.g., an ANOVA reports an interaction and 
specific contrasts with the same data set). The p-values from these tests are (typi-
cally) not independent, and so the tests to explore the distribution shape can be 
misleading. To address this concern, researchers using the p-curve analysis use just 
one p-value from each data set or experiment. Unfortunately, it is not always clear 
how to select a p-value from the set, and the choice can make a big difference. For 
example, choosing the smallest p-value from each experiment will often result in a 
distribution with right skew even when the null hypothesis is true. Likewise, choos-
ing the biggest significant p-value from each set will often produce a left skewed 
distribution, even when there is a real effect. To avoid this problem, some research-
ers apply an arbitrary rule, such as using the p-value from the first reported relevant 
test; but this does not really address the fundamental problem: the analysis should 
be based on the p-values that are relevant to the question of interest. It often requires 
subject matter expertise to identify such p-values, and sometimes there is not a 
unique p-value that relates to the question of interest.

For the p-curve graph in Fig. 6.5, the question of interest is, “does the location of 
caloric information influence menu choices?” and we picked the p-values that spe-
cifically investigated that question. The resulting left skewed p-curve distribution 
indicates that the six studies reported here were not produced by proper hypothesis 

G. Francis and E. Thunell



143

tests. Importantly, this conclusion does not mean that each of the six tests is flawed. 
The identified problem is with the set of hypothesis tests (their distribution of p-
values). Surely some of the individual studies are problematic as well (else the set 
could not be), but it is possible that some studies are flawed and some studies 
are fine.

This aspect of interpretation can matter quite a bit for other types of questions of 
interest. For example, suppose you applied a p-curve analysis to a specific researcher 
because you wonder if he engages in QRPs. You select one p-value from each of 
seven articles published by this researcher. Figure 6.6 shows the (entirely made up) 
p-curve for the selected p-values. It is right skewed, so the p-curve analysis suggests 
that there is “evidential value” in this set of p-values. Unfortunately, this conclusion 
does not really answer the question of whether the researcher engages in question-
able research practices. It could be that the researcher does not engage in QRPs, but 
it could also be the case that for some investigations the researcher does use QRPS 
and for some investigations he does not. Publishing some studies with evidential 
value means that a combination of studies with evidential value and studies without 
evidential value (e.g., a flat distribution) might produce a right skewed distribution 
of p-values. The point is that a property of the set does not necessarily apply to each 

Fig. 6.6  Results of the p-curve app for seven (hypothetical) studies investigating a researcher who 
investigates two different topics. Although the distribution is right-skewed, thereby indicating 
some “evidential value,” this finding is difficult to interpret
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member of the set. A right skewed p-curve does not mean that every study a 
researcher reports is fine, and a left skewed p-curve does not mean that every study 
a researcher reports is problematic. For this reason, it usually does not make sense 
to apply p-curve analyses to an author, a specific scientific journal, or a field of 
study. Instead, p-curve analyses should be used to evaluate specific claims or con-
clusions, when those claims or conclusions are based on a reported set of p-values. 
For the studies producing the p-values in Fig. 6.6, it might make sense to look into 
the set of studies related to specific conclusions made by the researcher, and use the 
p-curve analysis to evaluate the evidential value of the studies relative to those claims.

�Conclusions

Questionable Research Practices (QRPs) often leave a trail of evidence that indi-
cates they were involved in producing the reported outcomes. Proper experiments 
(without QRPs) have fundamental properties that can be identified across experi-
ments. One such property is how success should relate to experimental power. 
Excess success for a set of experiments indicates that the results were generated in 
a way that violates good data collection, analysis, or reporting. This discrepancy can 
be identified with the Test for Excess Success. A second such property is the distri-
bution of p-values, which should be right-skewed for proper experiments that inves-
tigate a real effect. The distribution of p-values should almost never be left-skewed 
for experiments that were generated without QRPs. A left-skewed distribution indi-
cates that the results were generated in a way that violates good data collection, 
analysis, or reporting. These problems can be identified by the p-curve analysis.

Within a single experiment, it is often useful to look for various discrepancies 
between reported statistics. Such discrepancies do not necessarily indicate the 
involvement of QRPs, but they do suggest that something has gone wrong in the 
reporting of the experiment. Thus, readers should be somewhat skeptical about the 
validity of the reported results and the associated conclusions.

As is the case for many types of detective work, a data detective may be able to 
conclude that there is something “odd” about reported results but not pinpoint 
exactly what has gone wrong. Inconsistencies between statistics might arise from 
fraud or they might be the result of simple typos. In a similar way, neither the Test 
for Excess Success nor the p-curve analysis can identify precisely how researchers 
produced results that are too-good-to-be-true or that generate a left-skewed distribu-
tion of p-values. Still, the burden of proof is on the scientists; they should always 
provide evidence to support their claims. If the reported results seem unbelievable, 
other scientists should dismiss the claims until sufficient evidence is produced.

While some scientists may deliberately set out to deceive others, we suspect that 
most scientists introduce QRPs without realizing it. Indeed, one very beneficial use 
of the various methods for detecting the impact of QRPs is for scientists to apply 
them to their own work before publishing. Hopefully, this could motivate scientists 
to examine their research methods in detail and root out QRPs. Such applications 
will greatly improve scientific work.
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